Gauss sums for function fields

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pure Gauss Sums over Finite Fields

New classes of pairs e,p are presented for which the Gauss sums corresponding to characters of order e over finite fields of characteristic p are pure, i.e., have a real power. Certain pure Gauss sums are explicitly evaluated. §

متن کامل

Bounds of Gauss Sums in Finite Fields

We consider Gauss sums of the form Gn(a) = ∑ x∈Fpm χ(x) with a nontrivial additive character χ 6= χ0 of a finite field Fpm of pm elements of characteristic p. The classical bound |Gn(a)| ≤ (n−1)pm/2 becomes trivial for n ≥ pm/2 + 1. We show that, combining some recent bounds of HeathBrown and Konyagin with several bounds due to Deligne, Katz, and Li, one can obtain the bound on |Gn(a)| which is...

متن کامل

Cyclotomic-intermediate Fields via Gauss Sums

Let p be an odd prime, and let m divide p−1. Let ζ = e and let ω = e. The field extension Q(ω) ⊂ Q(ω, ζ) is Galois with cyclic Galois group isomorphic to (Z/pZ)×. The unique field between Q(ω) and Q(ω, ζ) having degree m over Q(ω) takes the form Q(ω, τ) where τ is a Gauss sum, to be described below. Furthermore, under some conditions we can compute τ as an element α of Q(ω), thus expressing the...

متن کامل

Gauss Problem for Function Fields

According to a celebrated conjecture of Gauß , there are infinitely many real quadratic fields whose ring of integers is principal. We recall this conjecture in the framework of global fields. If one removes any assumption on the degree, this leads to various related problems for which we give solutions; namely we prove that there are infinite families of principal rings of algebraic functions ...

متن کامل

On Gauss-Jacobi sums

In this paper, we introduce a kind of character sum which simultaneously generalizes the classical Gauss and Jacobi sums, and show that this “Gauss-Jacobi sum” also specializes to the Kloosterman sum in a particular case. Using the connection to the Kloosterman sums, we obtain in some special cases the upper bound (the “Weil bound”) of the absolute values of the Gauss-Jacobi sums. We also discu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 1991

ISSN: 0022-314X

DOI: 10.1016/s0022-314x(05)80040-x